5. J. Elguero and R. Jacquier, Bull. Soc. Chim. Fr., No. 9, 2832 (1966).


6. R. N. Butler and I. P. James, J. Chem. Soc., Perkin Trans. 1, 553 (1982).

5-HYDRAZINO-2-ISOXAZOLINES

K. N. Zelenin, A. Yu. Ershov, I. P. Bezhan, V. A. Khrustalev, and S. I. Yakimovich

In view of the high and varied biological activity of many isoxazole derivatives [1], to find new methods for their synthesis is becoming timeyl. We have established that a simple method of obtaining some 5-hydrazino-2-isoxazolines IIa-c is the reaction of the readily available 5-hydroxy-3,5-dimethyl-2-isoxazolines I [2] with the respectivey hydrazines.

UDC 547.786.1.07

II a R=H, R¹=COC₆H₅; b R=H, R¹=COC₆H₄NO₂·p; c R=R¹=CH₃

According to ¹H and ¹³C NMR data, the compounds IIa-c have the cyclic structure A, and show no tendency to go over in various solvents to the linear form B. Incidentally the hydrazinooximes of 1,3-dioxo compounds are unknown.

With IIa,b the theoretical possibility of formation of a pyrazoline ring C must also be considered. But this variant must be excluded because in the ¹³C NMR spectra, the $C_{(5)}$ atom of tautomer C ought to be located in the 80-90 ppm range [3]. In the case of IIc, however, which is incapable of such a transition, the $C_{(5)}$ signal appears at a weaker field (98.9 ppm). The value for the $C_{(5)}$ signal in IIa, viz., 100.2 ppm, is also evidence that it is located in a N,O-, and not a N,N environment. An attempt to synthesize a type C compound by another route, by the reaction of hydroxylamine and 1-benzoy1-5-hydroxy-3,5-dimethy1-2-pyrazoline [4] yielded benzhydrazide and a mixture of I with acetylacetone dioxime.

II was synthesized by boiling equimolar amounts of the reagents in benzene solution in the presence of KU-2 carion exchanger in the H^+ form. The elemental compositions of IIa-c agree with those calculated.

IIa: yield 72%, mp 107-108° (from hexane-ethyl acetate mixture). PMR spectrum (DMFA-D₇): 1.69 (s, 3H), and 2.01 (t, 3H, J = 1.0 Hz) - 2 CH₃ groups; 2.99 and 3.21 (2H, J_{AB} = 18.0, J = 1.0 Hz, 4-H); 5.85 (d, 1H, J = 6.0 Hz, NH); 7.53-8.0 (m, 5H, H_{arom}); 9.85 ppm (d, 1H, J = 6.0 Hz, NHCO). ¹³C NMR spectrum (CDCl₃): 13.6 J_{CH} = 129.0 Hz) and 23.6 (J_{CH} = 129.0, J_{CCCH} = 4.0 Hz) - 2 CH₃ groups; 47.0 (J_{CH} = 136.0, J_{CCCH} = 4.0 Hz, C(4)); 100.2 (C(5)); 158.3 (J_{CCH} = 4.5 Hz, C(3)); 170.2 (J_{CCH} = 6.8 Hz, C=0); 128.7-134.6 ppm (C_{arom}).

IIb: yield 62%, mp 153-155° (from toluene). PMR spectrum (DMFA-D₇): 1.50 (s, 3H) and 1.83 (t, 3H, J = 1.0 Hz) - 2 CH₃ groups; 2.92 and 3.10 (2H, $J_{AB} = 18.0$, J = 1.0 Hz, 4-H); 5.93 (d, 1H, J = 5.0 Hz, NH); 8.07 (d, 2H, J = 9.0 Hz) and 8.31 (d, 2H, J = 9.0 Hz, H_{arom}) 10.13 ppm (d, 1H, J = 5.0 Hz, NHCO).

IIc: yield 85%, mp 48-49° (from hexane-ethyl acetate mixture). PMR spectrum (DMFA-D₇): 1.44 (s, 3H), and 1.92 (t, 3H, J = 1.0 Hz) - 2 CH₃ groups; 2.46 (s, $(CH_3)_2N$); 2.72 and 3.00 (2H, $J_{AB} = 16.0$, J = 1.0 Hz, 4-H); 3.94 ppm (br. s, 1H, NH). ¹³C NMR spectrum (CD₃OD): 13.1 (J_{CH} = 129.0 Hz) and 24.1 (J_{CH} = 129.0, J_{CCCH} = 4.5 Hz) - 2 CH₃ groups; 45.3 (J_{CH} = 135.0, J_{CCCH} = 3.0 Hz, C₍₄₎); 49.5 (J_{CH} = 132.0, J_{CCCH} = 4.5 Hz, (CH₃)₂N); 98.9 (J_{CCH} = 3.0 Hz, C₍₅₎, 154.9 ppm (J_{CCH} = 6.5 Hz, C₍₃₎).

LITERATURE CITED

1. S. D. Sokolov, Usp. Khim., <u>68</u>, 533 (1979).

S. M. Kirov Academy of Military Medicine, Leningrad 194175. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 855-856, June, 1985. Original article received January 21, 1985.

714

- 2.
- R. Escale, F. Petrus, and J. Verducci, Bull. Soc. Chim. Fr., Nos. 3-4, 725 (1974). K. N. Zelenin, M. Yu. Malov, I. P. Bezhan, V. A. Khrustalev, and S. I. Yakimovich 3.
 - Khim. Geterotsikl. Soedin., No. 6, 855 (1985).
- V. G. Yusipov, S. I. Yakimovich, S. D. Nasiridinov, and N. A. Parpiev, Zh. Org. Khim., 4. 16, 415 (1980).